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Abstract
We systemically study the correlation properties of two-dimensional electrons
in the lowest as well as in higher Landau levels by the exact diagonalization
method. The Laughlin liquid state and the Wigner crystal are shown in
the lowest Landau levels. In higher Landau levels, bubbles and stripes are
found. The results coincide well with the current understanding of the strongly
correlated electrons in quantum Hall regimes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the early 1930s, Wigner suggested that two-dimensional (2D) electrons may crystallize into
a triangular lattice in the low-density and low-temperature limit where the electron–electron
interactions dominate over the kinetic energy. In an ideally clean 2D system, the critical
rs (rs = U/εF, corresponding to the ratio of the Coulomb energy scale U to the kinetic
energy scale of the Fermi energy εF) was suggested to be 37 ± 5 from quantum Monte Carlo
simulations [1]. A strong magnetic field perpendicular to the 2D plane can effectively localize
electron wavefunctions while keeping the kinetic energy controlled through Landau orbital
quantization [2]. Since this lessens the otherwise severe low-density condition, it is believed
that the Wigner crystal (WC) can be stabilized in a sufficiently strong magnetic field [3–5].
Approximate calculations [6] have shown that the WC becomes the lowest energy state when
ν < 1/6 for the GaAs/AlGaAs electron system and around ν = 1/3 for the hole system, where
ν is the filling factor of the Landau level (LL) defined by ν = 2πl2ρe, with ρe being the density
of 2D electrons and l = (h̄c/eB)1/2 the magnetic length.

On the other hand, the fractional quantum Hall effect (FQHE) [7, 8] was first discovered at
the lowest LL in the 2D electron systems (2DES). This remarkable phenomenon occurring at
certain unique values of odd-denominator filling factors ν = 1/3, 1/5, . . . has been associated
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with the formation of the uniform incompressible quantum state, or the Laughlin liquid. The
traditional alternative to the Laughlin liquid is a charge density wave (CDW), which does not
exhibit the FQHE. Hall plateaus with other odd-denominator fillings were also found in the
lowest LL as well as in higher LLs. Furthermore, there have appeared a bundle of enigmatic
phenomena for half-filled LLs since the discovery of the Hall metallic state at ν = 1/2 and the
only observed Hall plateau at the even-denominator filling factor (ν = 5/2) in the monolayer
system. Halperin et al suggested that the ν = 1/2 state may be viewed as a spin-polarized
Fermi liquid of composite fermions (CFs) [9, 10]. The ν = 5/2 quantum Hall state is now
widely accepted as the pairing of CFs in a vanishing effective magnetic field [11–13]. Works
on multilayer Hall systems have also been done intensively and extensively [14–18]. Because
of interlayer coupling, Hall plateaus at filling fractions not seen in the monolayer system such
as at ν = 1/2 can be distinguished clearly in bilayer systems [19].

Recently, a series of magneto-transport experiments on high-mobility samples in the
GaAs/Alx Ga1−x As heterostructures revealed new classes of correlated many-electron states
in higher LLs. The most prominent findings are the giant anisotropy in the resistivity near
the half-filling of the topmost LL [20, 21] and the re-entrant integral quantum Hall (RIQH)
states in the flanks of these same levels. It is believed that the highly anisotropic transport
is related to the formation of the unidirectional CDW state, or the stripe phase, which was
theoretically predicted by Koulakov et al based on the Hartree–Fock treatment of the high
LLs [22]. Eisenstein et al revealed that the anisotropy occurs when the 2D system is applied by
an in-plane magnetic field [23]. The easy direction of transport is perpendicular to the in-plane
field. Specifically, no anisotropy is observed for the ν = 5/2 state when the direction of the
magnetic field is perpendicular to the sample plane, whereas distinct anisotropy occurs when an
extra in-plane field is applied. Recent theoretical study shows that this system may be classified
by their symmetries, which are highly analogous to those of liquid crystals. The RIQH effect
was thought to be the depinning and sliding of the WC and reformation of the bubble phase.

There are many works that directly diagonalize the Hamiltonian for few-electron
systems [24–26]. Calculations for systems involving the electron spins are also attempted
but these have not been so successful because of the limitation of the dimensions of Hilbert
space [27]. Recently, Shibata and Yoshioka have successfully applied the density matrix
renormalization group method (DMRG) to the quantum Hall problem [28]. In this work, we
will systemically investigate the correlated properties of 2D electron systems in the lowest LL
as well as in higher LLs. We find that apart from the usual liquid and WC states in the lowest
LL, bubble states and stripe states form in higher LLs. These states are called CDW. Our results
coincide with the prevailing explanation of the anisotropic transportation measurements.

2. Method

We consider Ne electrons moving in a rectangular plane of size a ×b with a high magnetic field
B pointing in the z-direction. The number of states in each degenerate LL is Ns = ab/2πl2.
In the Landau gauge �A = (0, Bx), a basis of the nth LL consists of Ns degenerate states which
is labelled by an integer j with 1 � j � Ns is

ψ̃n, j = NneiX j y/l2
Hn((x − X j)/ l) e−(x−X j )

2/2l2
, (1)

where X j = 2πl2 j/b. Hn(x) is the Hermitian polynomial with n the LL index and
Nn = (2nn!√πlb)−1/2 is the normalization constant. The wavefunction ψ̃n, j is periodic in
the y-direction. To make the wavefunction periodic in the x-direction as well, the following
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combination of ψ̃n, j should be used:

ψn, j (�r) =
[

1

b
√
πl

]1/2 ∞∑
k=−∞

Hn(x − X j )e
[i(X j +ka)y/l2−(X j +ka−x)2/2l2]. (2)

The electrons in the cell interact with each other and with the uniform positive background
charge by Coulomb interaction. Because of the periodic boundary condition, the Coulomb
interaction potential in real space is given by

V (�r1 − �r2) =
∑

s

∑
t

e2

ε|�r1 − �r2 + sax̂ + tbŷ|

= 1

ab

∑
�q

2πe2

ε|�q| e−i�q ·(�r1−�r2), (3)

where qx = 2πs/a, qy = 2π t/b with s, t integers. The Hamiltonian is expressed in the second
quantized picture as

Ĥ =
∑

j

εM a†
j a j +

∑
{ j}

A j1 j2 j3 j4a
†
j1

a†
j2

a j3a j4, (4)

where a†
j (a j ) is the creation (annihilation) operator of the state ψn, j . εM is the classical

Coulomb energy of the WC with a rectangular unit cell, which is given by [24]

εM = − e2

ε
√

ab

[
2 −

∑
k1,k2

′
φ−1/2[π(λk2

1λ
−1k2

2)]
]
, (5)

where λ = a/b, and the sum over k1 and k2 excludes k1 = k2 = 0, and φα(z) = ∫ ∞
1 tαe−zt dt .

By constraining ourselves to the topmost LL n, the matrix element A is given by

A j1 j2 j3 j4 = 1
2

∫
d2�r1

∫
d2�r2ψ

∗
n, j1(�r1)ψ

∗
n, j2(�r2)V (�r1 − �r2)ψn, j3(�r2)ψn, j4(�r1)

= δ′
j1+ j2, j3+ j4

1

2ab

∑
�q
δ′

j1− j4,qy b/2π

2πe2

ε|�q| e− 1
2 �q2l2−iqx (X j1 −X j3 )

[
Ln

( �q2l2

2

)]2

, (6)

where the Kronecker δ′
j1, j2

indicates j1 = j2 (mod Ns) and the Ln(x) are Laguerre polynomials.
In the following discussions, we only consider the correlation between electrons in the topmost
LL since the lower LLs are completely filled and effects from electrons in lower LLs can be
viewed as a uniform background. In the mean-field approximation, this background plays
the role of screening the Coulomb interactions between electrons in the topmost LL. But this
screening effect is not critical, and in our computation we can safely neglect it [29].

For a system of Ne polarized electrons with Ns degenerate states, the number of electrons
at the topmost LL (the nth LL) is Nn = Ne − 2n × Ns. The lower LLs are fully filled and
the filling factor at the topmost LL is then νn = Nn/Ns. We numerically diagonalize the
Hamiltonian by taking account of several symmetries of the system. First, one notes that the
dimension of the Fock space is C Nn

Ns
. Owing to the translational symmetry along the y-axis,

Jtot ≡ ∑Ns
i=1 ji (mod Ns). This symmetry will reduce the dimension of the Fock space by

nearly Ns times. The translation symmetry along the x-direction implies that two systems with
values of Jtot which differ by a multiple of Nn are equivalent to that with Jtot, which means only
a small number of Jtot that leads to different results.

In figure 1 we show the low-lying energy spectrum versus Jtot in the lowest LL for nine
electrons at ν = 1/2 and six electrons at ν = 1/3, respectively. The energy is minimized
for the optimal aspect ratio of the sample a/b = √

3 and is measured in units of e2/ l. The
shorter dashes indicate degenerate states with the same Jtot. Our results show that only two-
fold degeneracy is found in all states.
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Figure 1. Low-lying energy spectra in the lowest LL for ν = 1/2 with nine electrons and ν = 1/3
with six electrons, respectively. The shorter dashes indicate degenerate states with the same Jtot.
The number of dashes gives the degeneracy.

3. Pair-correlation functions

The pair-distribution function of the electrons at the topmost LL n is given by

gn(�r) = ab

Nn(Nn − 1)
〈�n|

∑
i 	= j

δ(�r + �ri − �r j )|�n〉 = 1

Nn(Nn − 1)

×
∑
�q,{ j}

e[i�q ·�r−�q2l2/2−iqx (X j1−X j3 )]δ′
j1+ j2, j3+ j4δ

′
j1− j4,qyb/2π 〈�n|a†

j1
a†

j2
a j3a j4|�n〉, (7)

while the wavefunction |�n〉 is written by a linear combination of the bases as

�n =
∑
{ j}

c( j1, j2, . . . , jNn )a
†
j1

a†
j2

· · · a†
jNn

|0〉. (8)

3.1. Correlations in the lowest LL

Figure 2 displays the ground-state pair-correlation functions in the lowest LL. For ν = 1/2
and 1/3 the correlation functions show no spatial crystalline symmetry. However, we note that
there is a remarkable distinction between these two liquid-like states. In the ν = 1/2 state,
electrons can approach each other with high probability; this is a common Fermi liquid feature.
It is currently considered as a metallic CF sea state. On the other hand, in the ν = 1/3 state
the probability for electrons to approach each other is strongly quenched. This is the typical
characteristic of the famous Laughlin liquid, which is described by a variational wavefunction
as

�(�r1, �r2, . . .) =
∏
j 	=k

(z j − zk)
3 exp

[
−

∑
j

r 2
j /4l2

]
, (9)

where z j = x j − y j is the complex coordinate of the i th particle. Because of the shape of our
sample, we cannot directly compare the overlap of the ground-state wavefunction between our
result and equation (9).

As shown in figure 2(c), the ν = 1/7 state exhibits a hexagonal structure, indicating that a
WC is formed. We note the oscillation peaks are not uniform, implying that the crystalline state
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Figure 2. The ground-state pair-correlation functions in the lowest LL for (a) ν = 1/2, (b) ν = 1/3,
and (c) ν = 1/7, respectively. The coordinates are normalized by the dimension of the cell:
(X,Y ) = (x/a, y/b).

Figure 3. Same as in figure 2 for one of the low-lying excited states at ν = 1/2 and 1/3. The crystal
characteristic can be clearly identified.

may not be the naive WC but the more general CDW. In the latter configuration, there may be
several electrons that reside in a lattice site (form a ‘bubble’). In our calculation, the ν = 1/7
state seems to reveal the feature of a superlattice. We are not certain whether this result is a
novel CDW state or just a finite size effect.

Figure 3 reveals that for some low-lying excited state, the pair-correlation functions also
reveal a crystalline structure at ν = 1/2 and 1/3 as well. The crystalline characteristic
at ν = 1/2 is less obvious than at ν = 1/3, because the overlap between wavefunctions
at adjacent lattice sites are larger. The broken symmetries in excited states reflect that the
magneto-rotons have wavevectors similar to that of the WC.
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Figure 4. The νn = 1/2 pair-correlation functions for higher lowest Landau levels: (a) n = 1;
(b) n = 2; (c) n = 3.

3.2. Correlations in higher LLs

In figure 4, we show the pair-correlation functions in higher LLs at νn = 1/2 or ν = 2n + 1/2.
We calculate nine electrons in the topmost LL. For n = 1, there is no indication of the
crystalline symmetry. The state is nearly liquid-like, which coincides with experimental
observations. Theoretically, the ν = 2 + 1/2 state is explained as a paired composite
Pfaffain state, which shows a quantum Hall plateau at the even-denominator filling factor
accompanying a energy gap. For n = 2, the crystalline feature appears. For even higher
LLs (n � 3), the pair-correlation function reveals a unidirectional translation symmetry, which
is the familiar unidirectional CDW or stripe phase at the half-fillings in high LLs. These
states were first predicted by Koulakov et al [22] in the limit of large n, using Hartree–
Fock mean-field theory, and they were recently observed in a series of experiments [20, 21].
The experimental anisotropic phenomena occur at n � 2, while ours are at n � 3
(figure 4(c)). The difference may result from the finite number of electrons employed in our
computations. Nevertheless, the numerical results coincide qualitatively with the experimental
observations.

Figure 5 shows that the pair-correlation functions in higher LLs at νn = 1/3 or ν =
2n + 1/3. Accordingly, the ν = 2 + 1/3 state exhibits no signs of crystalline symmetry. At
n = 2 (figure 5(b)), we find that the correlation function reveals the characteristic of the so-
called bubble phase. This phase has been studied extensively in the literature [22, 29]. The
stripes at νn = 1/3 are formed at higher LLs than at νn = 1/2, because the electron density
is smaller. In figure 5(c), stripes are found at n � 4, which lead to the anisotropic magneto-
transport in 2D quantum Hall systems.
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Figure 5. Same as in figure 4 for νn = 1/3: (a) n = 1; (b) n = 2; (c) n = 4.

4. Discussion

We have systemically calculated the pair-correlation functions for a finite electron system on a
rectangular sample. We recovered the rich phase structure for 2D electrons in the quantum Hall
regime in the lowest LL as well as in higher LLs. Our results qualitatively coincide with the
current understanding of relevant phenomena and experimental observations. In the lowest LL,
we find that hexagonal WCs exist in the low-lying excited states at ν = 1/2 and 1/3 as well.
For higher LLs, we only consider correlations between electrons in the topmost LL whereas we
omit correlations between electrons in different LLs. The screening effects caused by electrons
in the lower filled LLs are neglected. For higher LLs, the Laughlin liquids eventually disappear
and are replaced by CDWs. In particular, the stripe phase dominates over other phases for
n � 1. The correlation functions also coincide with the variational Monte Carlo results carried
out in [29]. Some marginal distinctions mainly originate from the finite size effects of the exact
diagonalization method.
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